XPD mutations in trichothiodystrophy hamper collagen VI expression and reveal a role of TFIIH in transcription derepression.

نویسندگان

  • Donata Orioli
  • Emmanuel Compe
  • Tiziana Nardo
  • Manuela Mura
  • Christophe Giraudon
  • Elena Botta
  • Laura Arrigoni
  • Fiorenzo A Peverali
  • Jean Marc Egly
  • Miria Stefanini
چکیده

Mutations in the XPD subunit of the transcription/DNA repair factor (TFIIH) give rise to trichothiodystrophy (TTD), a rare hereditary multisystem disorder with skin abnormalities. Here, we show that TTD primary dermal fibroblasts contain low amounts of collagen type VI alpha1 subunit (COL6A1), a fundamental component of soft connective tissues. We demonstrate that COL6A1 expression is downregulated by the sterol regulatory element-binding protein-1 (SREBP-1) whose removal from the promoter is a key step in COL6A1 transcription upregulation in response to cell confluence. We provide evidence for TFIIH being involved in transcription derepression, thus highlighting a new function of TFIIH in gene expression regulation. The lack of COL6A1 upregulation in TTD is caused by the inability of the mutated TFIIH complexes to remove SREBP-1 from COL6A1 promoter and to sustain the subsequent high rate of COL6A1 transcription. This defect might account for the pathologic features that TTD shares with hereditary disorders because of mutations in COL6A genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In TFIIH, XPD Helicase Is Exclusively Devoted to DNA Repair

The eukaryotic XPD helicase is an essential subunit of TFIIH involved in both transcription and nucleotide excision repair (NER). Mutations in human XPD are associated with several inherited diseases such as xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. We performed a comparative analysis of XPD from Homo sapiens and Chaetomium thermophilum (a closely related thermostable f...

متن کامل

Architecture of the Human and Yeast General Transcription and DNA Repair Factor TFIIH.

TFIIH is essential for both RNA polymerase II transcription and DNA repair, and mutations in TFIIH can result in human disease. Here, we determine the molecular architecture of human and yeast TFIIH by an integrative approach using chemical crosslinking/mass spectrometry (CXMS) data, biochemical analyses, and previously published electron microscopy maps. We identified four new conserved "topol...

متن کامل

Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH.

As part of TFIIH, XPB and XPD helicases have been shown to play a role in nucleotide excision repair (NER). Mutations in these subunits are associated with three genetic disorders: xeroderma pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD). The strong heterogeneous clinical features observed in these patients cannot be explained by defects in NER alone. We decided to look ...

متن کامل

Reduced level of the repair/transcription factor TFIIH in trichothiodystrophy.

Trichothiodystrophy (TTD) is a rare hereditary multisystem disorder associated with defects in nucleotide excision repair (NER) as a consequence of mutations in XPD, XPB or TTDA, three genes that are all related to TFIIH, the multiprotein complex involved in NER and transcription. Here we show that all the mutations found in TTD cases, irrespective of whether they are homozygotes, hemizygotes o...

متن کامل

Defective transcription/repair factor IIH recruitment to specific UV lesions in trichothiodystrophy syndrome.

Most trichothiodystrophy (TTD) patients present mutations in the xeroderma pigmentosum D (XPD) gene, coding for a subunit of the transcription/repair factor IIH (TFIIH) complex involved in nucleotide excision repair (NER) and transcription. After UV irradiation, most TTD/XPD patients are more severely affected in the NER of cyclobutane pyrimidine dimers (CPD) than of 6-4-photoproducts (6-4PP). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 22 6  شماره 

صفحات  -

تاریخ انتشار 2013